Учитель! Подпишитесь на нашу рассылку и получайте 2 раза в месяц письма с обзором интересных сервисов, которые освободят массу вашего времени.

Вы отправили работу на проверку эксперту. Укажите номер телефона на него придет СМС
Скачать .pdf

Вариант 2

Математика Профильный уровень

Часть 1

Ответом на задания 1—12 должно быть целое число или десятичная дробь.

1
1

Площадь участка Незнайки 76,5 ар. Согласно системе мер, 1 ар=0,01 га. Вычислите площадь данного участка (в га).

2
2

На диаграмме представлена сравнительная динамика популярности поисковых запросов, таких как "ЕГЭ" и "ОГЭ" в течение всего 2015-2016-го учебного года. По горизонтали указаны месяцы, по вертикали — популярность (в баллах).

Вариант 2

Сравните наибольшие значения "ЕГЭ" и "ОГЭ", и разницу (в баллах) запишите в ответ.

3
3

В прямоугольном треугольнике ABC угол C прямой. Гипотенуза равна 12,6 см, катет CB равен 6,3 см. Найдите внешний угол (в градусах) при вершине B.

4
4

В приюте для бездомных животных "4 с хвостиком" — 84 собаки, из них 63 привиты. Семья Ивановых решила завести друга из приюта. Найдите вероятность того, что случайно выбранный ими пёс окажется не привитый.

5
5

Решите уравнение: [math]2\sqrt{4x-15}=2x-6[/math]. В ответе укажите наибольший из корней.

6
6

В ромбе ABCD бóльший угол равен 120​°. Бóльшая его диагональ равна [math]14\sqrt3[/math] см. Вычислите сторону ромба (в см).

7
7

Найдите тангенс угла наклона касательной, проведенной к графику функции [math]f(x)=\frac{sinx}{1-cosx}+36,2[/math] в точке [math]x_0=\frac\pi3[/math].

8
8

В четырехугольной пирамиде SABCD с вершиной S основанием является ромб, сторона которого равна 20 см, а диагональ — 32 см. Найдите объем пирамиды (в см3), если ее высота равна 13 см.

9
9

Вычислите значение выражения [math]-14tg2\alpha[/math], если sin[math]\alpha=0,6[/math] и [math]\frac\pi2<\alpha<\pi[/math].

10
10

Человек массой m1 = 76 кг двигается со скоростью v1 = 4,5 м/с, догоняет тележку массой m2 (кг), которая едет со скоростью v2 = 3,8 м/c, и прыгает на нее. Скорость, с которой будет теперь двигаться тележка, вычисляется по формуле [math]v=\frac{m_1v_1+m_2v_2}{m_1+m_2}[/math]. Какова масса тележки (кг), если скорость, которую она приобрела после прыжка человека, равна 4,3 (м/c)?

11
11

Бегун из Кении и бегун из Австрии стартуют одновременно из диаметрально противоположных точек беговой дорожки, которая представляет собой трек овальной формы длиной 750 м. Скорость кенийца на 3 км/ч больше скорости австрийца. Через сколько минут кенийский бегун догонит австрийского бегуна в первый раз?

12
12

Найдите точку максимума функции [math]f(x)=3x^3-13,5x^2-36x+10,6[/math]

 

Часть 2.

При выполнении заданий 13—19 требуется записать полное решение и ответ.

13

Дано уравнение sin 2x = 3(sin x + cos x - 1).

А) Решите уравнение.

Б) Найдите его корни, принадлежащие отрезку [1,5; 6].

Показать ответ

А) [math]2\pi k,\;k\in Z;\;\frac\pi2+2\pi n,\;n\in Z[/math]

Б) [math]\frac\pi2[/math]

14

В прямоугольном параллелепипеде ABCDA1B1C1D1 точка К лежит на ребре ВВ1 так, что КВ:КВ1=1:4. Плоскость α, проходящая через точки К и С1 параллельно прямой BD1, пересекает ребро АА1 в точке Р.

А) Докажите, что АР:А1Р=2:3.

Б) Найдите объем пирамиды, основанием которой является сечение параллелепипеда плоскостью α, а вершиной точка В1, если известно, что АВ=3, ВС=4, ВВ1=5.

Показать ответ

14

15

Решите неравенство [math]\log_x^2\left(3x-1\right)-\log_x\left(3x-1\right)\geq0[/math].

Показать ответ

[math](\frac13;\;\frac12\rbrack\cup\lbrack\frac23;\;1)\cup\left(1;\;+\infty\right)[/math]

16

В треугольнике АВС проведена медиана ВМ.

А) Может ли радиус окружности, вписанной в треугольник АВМ, быть в два раза меньше радиуса окружности, вписанной в треугольник АВС?

Б) Окружности, вписанные в треугольники АВМ и СВМ, касаются медианы ВМ в точках Р и К соответственно. Найдите расстояние между точками Р и К, если известно, что АВ=17, ВС=7, АС= [math]\sqrt{177}[/math].

Показать ответ

А) нет; Б) 5

17

Из сосуда, наполненного чистым глицерином, отлили 1 л, после этого в сосуд добавили 1 л воды. Затем отлили 1 л смеси и вновь долили 1 л воды. То же самое проделали в третий раз, в результате чего воды в сосуде стало в 7 раз больше, чем глицерина. Найдите объем сосуда. В каком отношении находились объемы глицерина и воды после второго доливания воды в сосуд?

Показать ответ

2 л; 1:3

18

Найдите все а, при каждом из которых уравнение [math]\log_{x-1}\left(4^{x-1}-3\cdot2^x-a\right)=0[/math] имеет ровно один корень, удовлетворяющий неравенству |x - 2|≤ 1.

Показать ответ

[math]a=-1,\;-9\leq a<-6[/math]

19

На 22 карточках написаны натуральные числа от 1 до 22.

A) Из этих карточек взяли две (с числами а и b) и составили неправильную дробь [math]\frac ab[/math]. Какое наименьшее число могло получиться?

Б) Из этих карточек составили 11 дробей. Могла ли их сумма иметь целое значение?

B) Из этих карточек составили 11 дробей. Какое наибольшее число этих дробей могли иметь целое значение?

Показать ответ

A) [math]\frac{22}{21}[/math]

Б) да, например, [math]\frac{13}3+\frac{17}6+\frac{10}{12}+\frac{22}{11}+\frac{21}7+\frac{20}4+\frac{19}1+\frac{18}9+\frac{16}8+\frac{15}5+\frac{14}2=51[/math]

В) 10

0 из 0
Ваш ответ Правильный ответ Первичный балл

Здесь появится результат тестовой части.

Нажмите на кнопку «Завершить работу», чтобы увидеть правильные ответы.

1 275 695
Уже готовятся к ЕГЭ и ОГЭ.
Присоединяйся!
Мы ничего не публикуем от вашего имени
или
Ответьте на пару вопросов
Вы...
Ученик Учитель Родитель