Учитель! Подпишитесь на нашу рассылку и получайте 2 раза в месяц письма с обзором интересных сервисов, которые освободят массу вашего времени.

Вы отправили работу на проверку эксперту. Укажите номер телефона на него придет СМС
Скачать .pdf

Вариант 9

Математика Профильный уровень

Часть 1

Ответом на задания 1—12 должно быть целое число или десятичная дробь.

1
1

На изготовление шкатулки на уроке труда требуется 3,5 листа картона. В пачке картона 10 листов. Сколько потребуется пачек картона для изготовления шкатулок классу из 23 человек?

2
2

На диаграмме изображена средняя влажность воздуха за июнь 2014 года в различных городах. По горизонтали представлена средняя влажность воздуха в %, по вертикали — названия городов.

Вариант 9

Определите по диаграмме, в скольких городах из представленных средняя влажность воздуха в июне превышала 60 %.

3
3

На клетчатой бумаге с размером клетки 1 см × 1 см изображён многоугольник. Найдите его площадь. Ответ дайте в см2

Вариант 9

4
4

Билет моментальной лотереи оказывается выигрышным с вероятностью 0,4. Маша купила 3 билета. Какова вероятность того, что 2 билета окажутся выигрышными, а третий нет?

5
5

Решите уравнение [math]\left(\frac2{54}\right)^{2x-5}=3^{18}[/math]

6
6

К окружности проведены касательная AD=9 см и секущая AC, проходящая через центр окружности точку O. Найдите площадь треугольника AOD (в см2​, если диаметр окружности BC=8 см.

Вариант 9

7
7

На рисунке изображён график функции f(x). Укажите количество точек, в которых производная функции равна нулю.

Вариант 9

8
8

В цилиндр вписан конус. Объём конуса равен [math]196\pi[/math]см3, а высота —12 см. Найдите площадь боковой поверхности цилиндра в см​2. В ответе укажите площадь, делённую на [math]\pi[/math].

9
9

Найдите значение выражения [math]\frac{\left(n^5\right)^{-6}}{\left(2m^3\right)^2}\div\frac{\left(n^{-10}\right)^3}{m^6}[/math]

10
10

Кинетическую энергию (в Дж) тела можно рассчитать по формуле [math]E_k=\frac{mv^2}2[/math], где m — масса тела (в кг), v — скорость тела (в м/с). Какова масса тела в (кг.), если при скорости 120 м/с оно приобретает энергию 36 000 Дж?

11
11

К 25-процентному раствору щелочи добавили 40-процентный и получили 37,5-процентный раствор. Если к данной смеси добавить 6 литров воды, то получится 30-процентный раствор. Найдите объём 40-процентного раствора (в л).

12
12

Найдите наименьшее значение функции [math]y=x^3+4,5x^2-12x+17[/math] на промежутке [0;7].

 

Часть 2.

При выполнении заданий 13—19 требуется записать полное решение и ответ.

13

Дано уравнение sin2x ⋅ cos4x=1.

А) Решите уравнение.

Б) Найдите его корни, принадлежащие отрезку [2; 4].

Показать ответ

а) [math]-\frac\pi4+\pi n,\;n\in Z[/math]

б) [math]\frac{3\pi}4[/math]

14

В правильной пирамиде PABC точки Е, F, K, M, N - середины ребер АС, ВС, РА, РВ и РС соответственно.

А) Докажите, что объем пирамиды NEFMK составляет четверть объема пирамиды PABC.

Б) Найдите радиус сферы, проходящей через точки N, Е, F, M, K, если известно, что АВ=8, АР=6.

Показать ответ

2,5

15

Решите неравенство |3x+1 — 9x| + |9x — 5 ⋅ 3x+6| ≤ 6 — 2 ⋅ 3x.

Показать ответ

(-∞; log32)⋃{1}

16

Дан квадрат ABCD. Точки К, L, M - середины сторон АВ, ВС и CD соответственно. AL пересекает DK в точке Р; DL пересекает АМ в точке Т; АМ пересекает DK в точке О.

А) Докажите, что точки Р, L, T, O лежат на одной окружности;

Б) Найдите радиус окружности, вписанной в четырехугольник PLTO, если АВ=4.

Показать ответ

[math]\frac{2\sqrt5}5[/math]

17

Два пешехода идут навстречу друг другу: один из А в В, а другой - из В в А. Они вышли одновременно, и когда первый прошел половину пути, второму оставалось идти еще 1,5 часа, а когда второй прошел половину пути, то первому оставалось идти еще 45 минут. На сколько минут раньше закончит свой путь первый пешеход, чем второй?

Показать ответ

30

18

Найдите все значения параметра а, при каждом из которых уравнение [math]\log_2^2\left|4-x^2\right|-2a\cdot\log_2\left|x^2-4\right|+a+6=0[/math] имеет ровно четыре различных корня.

Показать ответ

[math]\left\{-2\right\}\cup\left(3;\;\frac{10}3\right)[/math]

19

Про натуральное пятизначное число N известно, что оно делится на 12, и сумма его цифр делится на 12.

A) Могут ли все пять цифр в записи числа N быть различными?

Б) Найдите наименьшее возможное число N;

B) Найдите наибольшее возможное число N;

Г) Какое наибольшее количество одинаковых цифр может содержаться в записи числа N? Сколько всего таких чисел N (содержащих в своей записи наибольшее количество одинаковых цифр)?

Показать ответ

а) да, например, 12504; б) 10056; в) 99972; г) 4; 12 чисел.

0 из 0
Ваш ответ Правильный ответ Первичный балл

Здесь появится результат тестовой части.

Нажмите на кнопку «Завершить работу», чтобы увидеть правильные ответы.

1 275 740
Уже готовятся к ЕГЭ и ОГЭ.
Присоединяйся!
Мы ничего не публикуем от вашего имени
или
Ответьте на пару вопросов
Вы...
Ученик Учитель Родитель