Вы отправили работу на проверку эксперту. Укажите номер телефона на него придет СМС
Скачать .pdf

Вариант 5

Математика Профильный уровень

Часть 1

Ответом на задания 1—12 должно быть целое число или десятичная дробь.

1
1

Николай заправил автомобиль 40 литрами бензина стоимостью 35 рублей за литр. По карте постоянного клиента у него есть скидка 5 %. Вычислите, сколько заплатит Николай.

2
2

На диаграмме показано изменение индекса стоимости жилья в Москве за последние два года. По вертикали показана стоимость (в долл./м2), по горизонтали — полугодовые интервалы.

Вариант 5

Вычислите, на сколько долларов упал индекс стоимости жилья в марте 2016 г. по сравнению с сентябрем 2014 г.

3
3

На клетчатой бумаге с размером клетки 1 см × 1 см изображена трапеция. Найдите бо́льшую ее диагональ. Ответ дайте в см.

Вариант 5

4
4

В магазин поступила партия телевизоров в количестве 25 шт. Известно, что у пяти из них отсутствует в комплекте дистанционное управление. Найдите вероятность того, что Володя приобретёт полностью укомплектованный телевизор.

5
5

Решите уравнение [math]\sqrt{5x^2+2x-119}=x-1[/math]

6
6

В равнобедренном треугольнике ABC с основанием AC=[math]6\sqrt5[/math] проведена высота BH=6 см. Найдите радиус описанной окружности треугольника ABC (в см).

7
7

На рисунке изображен график производной функции f​′​ (x). Определите количество точек максимума функции.

Вариант 5

8
8

В правильной четырехугольной призме ABCDA1B1C1D1 высота равна 12 см, а диагональ основания — [math]4\sqrt3[/math]. Найдите угол (в градусах) между прямыми AA1 и B1D.

9
9

Вычислите [math]\frac{\left(log_613\right)^2-2log_613log_639+(log_639)^2}{\left(log_681\right)^2}[/math]

10
10

Для расчета сложных процентов по вкладу с учётом внутригодового начисления используется формула: [math]F=P(1+\frac rm)^{nm}[/math], где P — исходная сумма (в руб.), r — годовая процентная ставка [math]\left(r=\frac\%{100}\right)[/math], n — количество лет, m — количество внутригодовых начислений.

В конце первого года на счету было 165 375 руб. Определите исходную сумму вклада (в руб.), если процентная ставка 10 % и внутригодовых начислений было 2.

11
11

Некоторое количество раствора уксусной кислоты разбавили тремя литрами воды и получили 20 %-ный раствор. Определите начальную концентрацию раствора (в %), если, добавив в него 2 л 25 %-ного раствора, получили концентрацию в 40 %.

12
12

Найдите наибольшее значение функции [math]f(x)=sin\left(x-\frac{13\pi}{12}\right)-cos(x-\frac{13\pi}{12})[/math] на отрезке [math]\left[\frac\pi3;\frac{11\pi}{12}\right][/math]

 

Часть 2.

При выполнении заданий 13—19 требуется записать полное решение и ответ.

13

Дано уравнение [math]\frac2{1+tg^2x}=1+\sin x[/math].

А) Решите уравнение.

Б) Найдите его корни, принадлежащие отрезку [math]\left[-\frac{7\pi}2;\;-2\pi\right][/math].

Показать ответ

А) Преобразуем левую часть уравнения и получим:

[math]\frac2{\frac1{cos^2x}}=1+sinx[/math]

[math]2cos^2x=1+sinx[/math]

[math]2(1-sin^2x)-1-sinx=0[/math]

[math]2sin^2x+sinx-1=0[/math]

Пусть [math]sinx=t[/math]. Тогда

[math]2t^2+t-1=0[/math]

[math]t_1=-1[/math] [math]t_2=\frac12[/math]

Обратная замена:

[math]sinx=-1[/math] [math]x=-\frac\pi2+2\pi n[/math], [math]n\in Z[/math] - посторонний, т.к. по ОДЗ [math]cosx\neq0[/math]

[math]sinx=\frac12[/math]; [math]x_1=\frac\pi6+2\pi n[/math] , [math]x_2=\frac{5\pi}6+2\pi n[/math], [math]n\in Z[/math]

Б) Нанесем корни на числовую прямую и определим, какие корни входят в отрезок

Вариант 5

Ответ: А) [math]\frac\pi6+2\pi n,\;\frac{5\pi}6+2\pi n,\;n\in Z[/math]

Б) [math]-\frac{19\pi}6[/math]

14

PH - высота правильной четырехугольной пирамиды РАВСD, О - точка пересечения медиан треугольника ВСР.

А) Докажите, что прямые РН и АО не имеют общих точек.

Б) Найдите угол между прямыми РН и АО, если известно, что АВ=РН.

Показать ответ
Вариант 5

А) Опустим из [math]O[/math] перпендикуляр на [math](ABC)[/math] [math]OZ\perp(ABC)[/math]

[math]\Rightarrow(AOZ)\perp(ABC)[/math], [math]PH\perp(ABC)\Rightarrow PH\parallel(AOZ)[/math]

т.к [math]PH\not\in(AOZ)[/math], [math]AO\in(AOZ)[/math], то [math]PH[/math] и [math]AO[/math] не имеют общих точек, ч.т.д.

Б) [math]\angle(PH;AO)=\angle AOZ[/math]

Пусть [math]AB=PH=a[/math]

Рассмотрим [math]\bigtriangleup HPN[/math] и [math]\bigtriangleup ZON[/math], [math]\bigtriangleup HPN\sim\bigtriangleup ZON[/math] (по двум углам: [math]\angle H=90^\circ;\angle Z=90^\circ;\angle PNZ[/math] - общий)

[math]\Rightarrow\frac{NO}{NP}=\frac{NZ}{NH}=\frac{OZ}{PH}[/math], [math]\frac{NO}{OP}=\frac12[/math] (по свойству медиан треугольника) [math]\Rightarrow\frac{NO}{NP}=\frac13[/math] (т.к. [math]NP=NO+OP[/math])

[math]\Rightarrow OZ=\frac13PH=\frac13a[/math]

[math]ZN=\frac13HN;\;HN=\frac12DC=\frac12a[/math] (как средние линии [math]\bigtriangleup DBC[/math], [math]HN\parallel DC;BN=NC[/math]

[math]\Rightarrow ZN=\frac16a;MZ=\frac56a[/math]

Из [math]\bigtriangleup AMZ[/math] по теореме Пифагора: [math]AZ=\sqrt{MZ^2+AM^2}=\sqrt{\frac{25a^2}{36}+\frac{a^2}4}=a\sqrt{\frac{25+9}{36}}=\frac{a\sqrt{34}}6[/math]

[math]\angle AOZ=arctg(\frac{AZ}{OZ})=arctg(\frac{a\sqrt{34}}6\cdot\frac3a)=arctg(\frac{\sqrt{34}}2)[/math]

Ответ: [math]arctg\frac{\sqrt{34}}2[/math]

15

Решите неравенство [math]\log_{\left(x-2\right)^2}\left(9^x-3\right)\leq0[/math].

Показать ответ

ОДЗ: [math]x-2\neq-1;x-2\neq1;x-2\neq0;3^{2x}-3>0[/math]

[math]x\neq1;3;2[/math] [math]x>\frac12[/math]

Преобразуем неравенство:

[math]\frac12log_{x-2}(3^{2x}-3)\leq0[/math]

[math]\frac{ln(3^{2x}-3)}{ln(x-2)}\leq0[/math]

Нули числителя: [math]ln(3^{2x}-3)=0[/math]

[math]3^{2x}-3=1[/math]

[math]2x=log_34[/math]

[math]x=log_32[/math]

Нули знаменателя: [math]x-2=1[/math] [math]x=3[/math]

Нанесем на числовую прямую и расставим знаки:

Вариант 5

Ответ: (0,5; log32]⋃(1; 2)⋃(2; 3)

16

На гипотенузе АВ прямоугольного треугольника АВС как на стороне построен квадрат вне треугольника.

А) Докажите, что прямая, соединяющая центр квадрата и центр вписанной в треугольник АВС окружности, проходит через точку С.

Б) Найдите расстояние между центром квадрата и центром вписанной в треугольник АВС окружности, если известно, что АС= 4√2, BC= 3√2.

Показать ответ
Вариант 5

А) Если доказать, что [math]CQ[/math] - биссектриса [math]\angle ACB[/math], то будет доказано, что [math]C\in OQ[/math], т.к. [math]CO[/math] - биссектриса [math]\angle ACB[/math] (по свойству касательных, проведенных из одной точки)

Рассмотрим четырехугольник [math]CAQB[/math]:

[math]\angle C+\angle Q=180^\circ[/math],[math]\angle A+\angle B=\angle QAB+\angle QBA+\angle BAC+\angle ABC=180^\circ\Rightarrow CAQB[/math] может быть вписан в окружность

[math]\Rightarrow\angle QBA=\angle QCA=45^\circ,\angle QAB=\angle QCB=45^\circ\Rightarrow[/math](т.к. опираются на равные дуги) [math]CQ[/math] - биссектриса [math]\angle ACB\Rightarrow C\in OQ[/math], ч.т.д.

Б) [math]AC=4\sqrt2[/math], [math]BC=3\sqrt2[/math] , [math]OQ[/math] - ?

[math]\bigtriangleup CPB\sim\bigtriangleup APQ[/math] (по двум углам):[math]\angle PCB=\angle PAQ=45^\circ[/math], [math]\angle CPB=\angle APQ[/math] как вертикальные [math]\Rightarrow\angle PBC=\angle PQA[/math]

Пусть [math]\angle CAB=x[/math], тогда [math]\angle ABC=90^\circ-x=\angle PQA[/math], [math]\angle QAO=45^\circ+\frac x2[/math] (т.к. [math]\angle PAO=\angle CAO[/math] по свойству касательных)

Тогда для [math]\bigtriangleup AOQ[/math]: [math]\angle OQA+\angle QAO+\angle AOQ=180^\circ[/math]

[math]90^\circ-x+45^\circ+\frac x2+\angle AOQ=180^\circ\Rightarrow\angle AOQ=45^\circ+\frac x2[/math]

[math]\angle AOQ=\angle QAO\Rightarrow\bigtriangleup AQO[/math] - равнобедренный, [math]AQ=OQ=5[/math]

Ответ: 5

17

1 декабря 2016 года Валерий взял в банке в кредит 523 тыс. руб. под 10% годовых сроком на три года. Схема выплаты кредита следующая: 30 ноября каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на 10%), затем с 1-го до 30-го декабря Валерий выплачивает банку часть долга. По договоренности с банком было определено, что второй платеж будет в три раза меньше первого, а третий - в два раза меньше второго. Сколько рублей должен будет выплатить банку Валерий в декабре 2018 года?

Показать ответ

Решение: покажем в таблице кредитную историю Валерия:

Вариант 5

Решим получившееся уравнение:

[math]696113-10,46x=0[/math]

[math]x=\frac{696113}{10.46}=66550[/math], [math]2x=133100[/math]

Ответ: 133100

18

Найдите все значения параметра а, при каждом из которых система уравнений

Вариант 5

имеет ровно одно решение.

Показать ответ
plot abs(x^2-y^2)=2y-2x for x beetween -20 and 20

Решение: используем графический способ решения системы. Сначала построим график для первого уравнения.

1 сл: [math]x^2-y^2>0[/math]

[math]x^2=y^2[/math][math]\left|x\right|=\left|y\right|[/math]

График функции имеет вид "креста" (ветви креста - биссектрисы прямых углов) , слева и справа между "ветвями креста"- решение неравенства

Имеем уравнение:[math]x^2-y^2=2y-2x[/math]

[math](x+1)^2-(y+1)^2=0[/math]

[math]\left|x+1\right|=\left|y+1\right|[/math]

График функции есть крест, ветви которого- биссектрисы прямых углов. График смещен на (-1;-1)

2 сл: [math]x^2-y^2<0[/math]

[math]x^2=y^2[/math][math]\left|x\right|=\left|y\right|[/math]

График функции имеет вид "креста" (ветви креста - биссектрисы прямых углов), сверху и снизу между "ветвями креста"- решение неравенства

Имеем уравнение:[math]-x^2+y^2=2y-2x[/math]

[math](x-1)^2-(y-1)^2=0[/math]

[math]\left|x-1\right|=\left|y-1\right|[/math]

График функции есть крест, ветви которого- биссектрисы прямых углов. График смещен на (1;1)

3 сл: [math]x^2-y^2=0[/math]

Значит [math]0=2y-2x[/math]

[math]y=x[/math]

Построим график и семейство прямых, отражающие возможные решения системы уравнений. Для этого проанализируем уравнение прямой: график прямой всегда проходит через точку (2;-1)

Вариант 5

Имеем решение:

(-∞; -2] — прямая будет пересекать график в одной точке (в нижней части плоскости).

a= -1 — прямая пересекает y=x, и не пересекает две другие прямые с угловым коэффициентом -1, они параллельны.

[0; +∞) — прямая будет пересекать график в одной точке (в верхней части плоскости), но исключается значение а = 1, т.к. тогда прямая параллельна y=x

Ответ: (-∞; -2]⋃{-1}⋃[0; 1)⋃(1; +∞)

19

А) Существует ли шестизначное натуральное число, произведение цифр которого равно 1080?

Б) Существует ли десятизначное натуральное число, произведение цифр которого равно 1080?

В) Найдите наименьшее натуральное число, произведение цифр которого равно 1080.

Показать ответ

Решение:

А) Разложим число 1080 на простые множители: 1080= 2*2*5*2*3*3*3 (7 множителей), т.е можно найти такое число, чтобы оно состояло из этих цифр, но два множителя объединить в одну цифру. Например сделать 1080=2*4*3*3*3*5, т.е число 243335

Б) В пункте А найдено число, произведение цифр которого равно 1080. Значение произведения не изменится, если его домножить на 1. Таким образом мы имеем, например, число 3433351111, произведение цифр которого равно 1080

В) Разложим число 1080 на простые множители: 1080= 2*2*5*2*3*3*3 (7 множителей). Мы должны добиться минимального количества используемых цифр и у старших цифр числа должны стоять минимальные цифры.

Значит, имеем, что 5 -неизменная цифра, 3*3=9, остается 2, 2, 2, 3.Два варианта: 2*2*2=8 и 3, 2*2=4 и 3*2=6. Два возможные числа из следующих цифр: 5, 9, 8, 3 и 5 ,9, 4, 6. т.е. получим в итоге 3589 и 4569. Наименьшее число из получившихся - 3589

А) да, например, 243335; Б) да, например, 2433351111; В) 3589

0 из 0
Ваш ответ Правильный ответ Первичный балл

Здесь появится результат тестовой части.

Нажмите на кнопку «Завершить работу», чтобы увидеть правильные ответы.

1 599 936
Уже готовятся к ЕГЭ и ОГЭ.
Присоединяйся!
Мы ничего не публикуем от вашего имени
или
Ответьте на пару вопросов
Вы...
Ученик Учитель Родитель