Вы отправили работу на проверку эксперту. Укажите номер телефона на него придет СМС
Скачать .pdf

Вариант 5

Математика Профильный уровень

Часть 1

Ответом на задания 1—12 должно быть целое число или десятичная дробь.

1
1

По тарифному плану «Бессонный» интернет-провайдер каждый вечер снимает со счёта абонента 26 рублей. Если на счету осталось меньше 26 рублей, то на следующее утро интернет блокируется до пополнения счёта. Сегодня утром у Алексея на счету 800 рублей. Сколько дней (включая сегодняшний) он сможет пользоваться интернетом, не пополняя счёт?

2
2

На рисунке 40 жирными точками показано суточное количество осадков, выпавших в Дождевске со 2 по 14 марта 1972 года. По горизонтали указываются числа месяца, по вертикали — количество осадков, выпавших в соответствующий день в миллиметрах. Для наглядности жирные точки на рисунке соединены линией. Определите по рисунку, сколько дней из данного периода не выпадало осадков.

Вариант 5

3
3

Найдите площадь трапеции, изображенной на рисунке.

Вариант 5

4
4

Из множества чисел от 20 до 29 наудачу выбирают одно число. Какова вероятность того, что оно делится на 4?

5
5

Решите уравнение [math]\frac{28}{x^2-36}=1[/math]. Если уравнение имеет более одного корня, в ответе укажите меньший из них.

6
6

Параллелограмм и прямоугольник имеют одинаковые стороны. Найдите тупой угол параллелограмма, если его площадь равна половине площади прямоугольника. Ответ дайте в градусах.

Вариант 5

7
7

На рисунке изображён график у = f'(x) — производной функции f(x), определённой на интервале (—6; 9). Найдите промежутки возрастания f(x). В ответе укажете длину наибольшего из них.

Вариант 5

8
8

Площадь боковой поверхности цилиндра равна 12 π, а диаметр основания равен 2. Найдите высоту цилиндра.

9
9

Найдите значение выражения [math]\frac{104\sin17^\circ\times\cos17^\circ}{\sin34^\circ}[/math]

10
10

При быстром вращении ведёрка с водой вода из него не будет выливаться. При этом сила давления воды на дно не остаётся постоянной: она максимальна в нижней точке и минимальна в верхней. Вода не будет выливаться, если сила её давления на дно будет неотрицательной во всех точках траектории. В верхней точке сила давления P может быть равной нулю и выражается формулой [math]P=m\left(\frac{\nu^2}L-g\right)[/math], где m — масса воды в килограммах, v — скорость движения ведёрка в м/с, L — длина верёвки в метрах, g — ускорение свободного падения (g = 10 м/с ). С какой наименьшей скоростью надо вращать ведёрко, чтобы вода не выливалась, если длина верёвки равна 0,729 м?

11
11

По двум параллельным железнодорожным путям в одном направлении следуют товарный и пассажирский поезда, скорости которых равны соответственно 75 км/ч и 60 км/ч. Длина пассажирского поезда равна 1000 м. Найдите длину товарного поезда, если время, за которое он прошёл мимо пассажирского поезда, равно 9 минутам. Ответ дайте в метрах.

12
12

Найдите точку максимума функции [math]y=\log(-x^2+4x+5)+2[/math]

 

Часть 2.

При выполнении заданий 13—19 требуется записать полное решение и ответ.

13

а) Решите уравнение [math]6\cos^2(x-\frac{3\mathrm\pi}2)-3\sqrt2\sin\;x=0[/math]

б) Укажите корни этого уравнение, принадлежащие отрезку [math]\left[-\frac{5\mathrm\pi}2;-\mathrm\pi\right][/math]

Показать ответ

а) [math]\mathrm{πn},\;\mathrm n\in\mathbb{Z};[/math]

[math]\left(-1\right)^k\frac{\mathrm\pi}4+\mathrm{πk},\;\mathrm k\in\mathbb{Z};[/math]

б) [math]-2\mathrm\pi,\;-\frac{7\mathrm\pi}4;\;-\frac{5\mathrm\pi}4,\;-\mathrm\pi[/math]

14

Радиус основания конуса с вершиной Р равен 8, а длина его образующей равна 12. На окружности основания конуса выбраны точки А и В, делящие окружность на две дуги, длины которых относятся как 2 : 4.

а) Найдите площадь сечения конуса плоскостью РАВ.

б) Постройте сечение конуса плоскостью, проходящей через точку Р перпендикулярно основанию конуса и плоскости АВР.

Показать ответ
48√2
15

Решите систему неравенств [math]\left\{\begin{array}{l}25^\frac x2+\frac{20}{5^x}\geq9,\\\log_{x+5}\left(\frac{x+2}5\right)\leq0.\end{array}\right.[/math]

Показать ответ

(-2; log54] ⋃ [1;3]

16

Диагонали АС и BD трапеции ABCD взаимно перпендикулярны и пересекаются в точке О, причём АО • СО = ВО • DO.

а) Докажите, что трапеция ABCD равнобедренная.

б) Найдите радиус описанной вокруг трапеции окружности, если основания трапеции равны 6 и 8.

Показать ответ
5
17

Заводы в США и России за февраль выпустили более 39 танков. Число танков, выпущенных в России, уменьшенное на 3, более чем в 4 раза превышает число танков, выпущенных в США. Утроенное число танков, выпущенных в России, превышает удвоенное число танков, выпущенных за февраль в США, но не более, чем на 85. Сколько танков выпустили за февраль на заводе в России?

Показать ответ
33
18

Найдите все значения а, при которых любое решение уравнения [math]6\sqrt{x-1}+5\log_3(2x-1)+11a=0[/math] принадлежит отрезку [2 ; 5]

Показать ответ
[-2; -1]
19

а) Можно ли число 2015 представить в виде суммы двух различных натуральных чисел с одинаковой суммой цифр?

б) Можно ли число 100 представить в виде суммы двух различных натуральных чисел с одинаковой суммой цифр?

в) Найдите наименьшее натуральное число, которое можно представить в виде суммы четырёх различных натуральных чисел с одинаковой суммой цифр.

Показать ответ
а) да б) нет в) 66
0 из 0
Ваш ответ Правильный ответ Первичный балл

Здесь появится результат тестовой части.

Нажмите на кнопку «Завершить работу», чтобы увидеть правильные ответы.