Вы отправили работу на проверку эксперту. Укажите номер телефона на него придет СМС
Скачать .pdf

Вариант 11

Математика Профильный уровень

Часть 1

Ответом на задания 1—12 должно быть целое число или десятичная дробь.

1
1

На счету Сашиного мобильного телефона было 164 рубля, а после разговора с Таней осталось 84 рубля. Сколько минут длился разговор с Таней, если одна минута разговора стоит 2 рубля 50 копеек?

2
2

На рисунке изображён график осадков в городе N с 4 по 10 февраля 1994 года. На оси абсцисс откладываются дни, на оси ординат — количество осадков (в мм). Определите по рисунку, сколько дней из данного периода выпадало от 2 до 8 мм осадков.

Вариант 11

3
3

Найдите площадь прямоугольника, изображённого на клетчатой бумаге с размером клетки 1 см х 1 см. Ответ дайте в квадратных сантиметрах.

Вариант 11

4
4

Чтобы пройти в следующий круг соревнований, футбольной команде нужно набрать хотя бы 4 очка в двух играх. Если команда выигрывает, она получает 3 очка, в случае ничьей — 1 очко, если проигрывает — 0 очков.

Найдите вероятность того, что команде удастся выйти в следующий круг соревнований. Считайте, что в каждой игре вероятности выигрыша и проигрыша одинаковы и равны 0,2.

5
5

Найдите корень уравнения logx 25 = 2.

6
6

Основания равнобедренной трапеции равны 19 и 75. Тангенс острого угла равен 3/14. Найдите высоту трапеции.

7
7

На рисунке изображён график функции у = f(x), определённой на интервале (—4; 7). Найдите количество точек, в которых касательная к графику функции параллельна прямой у = — 2 или совпадает с ней.

Вариант 11

8
8

Конус объёмом 5,3 вписан в шар. Радиус основания конуса равен радиусу шара. Найдите объём шара.

9
9

Найдите значение выражения [math]y=2x+\sqrt{4x^2-24x+36}[/math] при [math]x\leq3[/math].

10
10

Ёмкость высоковольтного конденсатора в телевизоре С = 3 • 10-6 φ. Параллельно с конденсатором подключён резистор с сопротивлением R = 6 • 106 Ом. Во время работы телевизора напряжение на конденсаторе U0 = 24 кВ. После выключения телевизора напряжение на конденсаторе убывает до значения U (кВ) за время, определяемое выражением [math]t=\alpha RC\log_2\frac{U_0}U[/math] (с), где [math]\alpha[/math] = 1,5 — постоянная. Определите наибольшее возможное напряжение (в киловольтах) на конденсаторе, если после выключения телевизора прошло не менее 54 с.

11
11

Плиточник должен уложить 180 м2 плитки. Если он будет укладывать на 5 м2 плитки в день больше, чем запланировал, то закончит работу на 3 дня раньше. Сколько квадратных метров плитки в день планирует укладывать плиточник?

12
12

Найдите точку максимума функции [math]y=-\frac x{3969+x^2}[/math].

 

Часть 2.

При выполнении заданий 13—19 требуется записать полное решение и ответ.

13

а) Решите уравнение 810,5x - 0,75 = 7 • 3х - 2- 4.

б) Найдите все корни этого уравнения, принадлежащие промежутку (1 ; 2,25].

Показать ответ
а) 2; log3 4; б) 2
14

На ребре A1D1 единичного куба ABCDA1B1C1D1 взята точка К, А1К : KD1 =1 : 2.

а) Постройте сечение куба, проходящее через точку К и параллельное прямым C1D и B1D1.

б) Найдите площадь этого сечения.

Показать ответ

[math]\frac{\sqrt3}{18}[/math]

15

Решите неравенство [math]\left(x-1\right)\left(2\log_3^2x-5\log_3x+2\right)<0[/math].

Показать ответ

[math]\left(0;\;1\right)\cup\left(\sqrt3;\;9\right)[/math]

16

Внутри прямого угла АОВ проведён луч ОС. В угол ВОС вписана окружность, касающаяся лучей ОВ и ОС в точках В и С соответственно, в угол АОС вписана окружность, касающаяся лучей ОА и ОС в точках А и С соответственно. Радиус одной из этих окружностей в 3 раза больше радиуса другой.

а) Докажите, что если Р и Q — центры этих окружностей, то ∠POQ = 45°.

б) Найдите косинус меньшего из углов АОС и ВОС.

Показать ответ

[math]\frac{1+\sqrt7}4[/math].

17

Предприниматель взял в аренду на 3 года помещения на условиях ежегодной платы (в конце года) С рублей. Имея некоторый первоначальный капитал, он удвоил его в течение года и оплатил аренду. Такая схема деятельности осуществлялась все три года. В результате в конце третьего года деятельности, после оплаты аренды предприниматель имел капитал в три раза превышающий первоначальный. Определите величину первоначального капитала, если аренда С составляла 12000 рублей.

Показать ответ
16 800
18

Найдите все значения параметра а, при каждом из которых неравенство х3 + (а - 5)х2 + (4 - 3а)х + а2 - а ≤ 0 выполняется для всех х ≤ - 1.

Показать ответ
[-5;2]
19

а) Могут ли 4 последовательных члена непостоянной арифметической прогрессии быть простыми числами?

б) Дана непостоянная арифметическая прогрессия с разностью, не кратной 3. Какое наибольшее количество подряд идущих её членов могут быть простыми числами?

в) Известно, что 6 последовательных членов непостоянной арифметической прогрессии являются простыми числами. Найдите наименьшее значение, которое может принимать разность такой прогрессии.

Показать ответ
а) Да, например, 5, 11, 17, 23; б) 3 в) 30
0 из 0
Ваш ответ Правильный ответ Первичный балл

Здесь появится результат тестовой части.

Нажмите на кнопку «Завершить работу», чтобы увидеть правильные ответы.