Вы отправили работу на проверку эксперту. Укажите номер телефона на него придет СМС
Скачать .pdf

Вариант 20

Математика Профильный уровень

Часть 1

Ответом на задания 1—12 должно быть целое число или десятичная дробь.

1
1

При оплате услуг через платёжный терминал взимается комиссия 5%. Терминал принимает суммы, кратные 10 рублям. Пётр Агафонович хочет положить на счёт своего мобильного устройства не меньше 500 рублей. Какую минимальную сумму он должен положить в приёмное устройство данного терминала?

2
2

В ходе химической реакции количество исходного вещества (реагента), которое ещё не вступило в реакцию, со временем постепенно уменьшается. На рисунке 105 эта зависимость представлена графиком. На оси абсцисс откладывается время в минутах, прошедшее с момента начала реакции, на оси ординат — масса оставшегося реагента, который ещё не вступил в реакцию (в килограммах). Определите по графику, сколько килограммов реагента вступило в реакцию за первые четыре минуты.

Вариант 20

3
3

Около трапеции описана окружность. Периметр трапеции равен 72, средняя линия равна 14. Найдите боковую сторону трапеции.

Вариант 20

4
4

У жителя А. волшебной страны бывает два типа настроения: прекрасное и замечательное, причём настроение, установившись утром, держится неизменным весь день. Известно, что с вероятностью 0,8 настроение жителя А. завтра будет таким же, как и сегодня. Сегодня 10 апреля, настроение жителя А. прекрасное. Найдите вероятность того, что 13 апреля у жителя А. настроение будет замечательное.

5
5

Найдите корни уравнения [math]tg\frac{\mathrm\pi\left(2\mathrm x+1\right)}4=-1[/math], в ответе запишите наибольший отрицательный корень.

6
6

В тупоугольном треугольнике KLM KL = LM = 18, КН — высота, LH = 9. Найдите cos ∠KLM.

7
7

Прямая у = 24х + 5 является касательной к графику функции у = 32х2 + bх + 7. Найдите значение b, учитывая, что абсцисса точки касания больше 0.

8
8

Сосуд в виде правильной треугольной пирамиды высотой 25√3 см до верха заполнен водой. Найдите, на какой высоте будет находиться уровень воды, если её перелить в другой сосуд, имеющий форму куба со стороной, равной стороне основания данной треугольной пирамиды. Ответ выразите в сантиметрах.

9
9

Найдите 45а - 19b + 40, если [math]\frac{3a-5b+7}{8a-4b+7}=6[/math].

10
10

Амплитуда колебаний маятника зависит от частоты вынуждающей силы и определяется по формуле [math]A\left(\omega\right)=\frac{A_0\omega_p^2}{\vert\omega_p^2-\omega^2\vert}[/math], где [math]\omega[/math] — частота вынуждающей силы (в с-1), А0 — постоянный параметр, [math]\omega_p[/math] = 350 c-1 — резонансная частота. Найдите максимальную частоту [math]\omega[/math] (в с-1), меньшую резонансной, для которой амплитуда колебаний превосходит величину А0 не более чем на [math]\frac{A_0}{24}[/math]. Ответ выразите в с-1.

11
11

Два гонщика участвуют в гонках. Им предстоит проехать 15 кругов по кольцевой трассе с протяженностью круга 9,6 км. Оба гонщика стартовали одновременно, а на финиш первый пришел раньше второго на 12 мин. Чему равнялась скорость второго гонщика, если известно, что первый гонщик в первый раз обогнал второго на круг через 1 час 12 мин? Ответ дайте в км/ч.

12
12

Найдите наибольшее значение функции y = -π + 4x + 4tg x на отрезке [math]\left[0;\;\frac{\mathrm\pi}4\right][/math].

 

Часть 2.

При выполнении заданий 13—19 требуется записать полное решение и ответ.

13

а) Решите уравнение [math]\sin3x=2\cos\left(\frac{\mathrm\pi}2-x\right)[/math].

б) Найдите все корни этого уравнения, принадлежащие промежутку (-3π/2; 0].

Показать ответ

а) [math]\mathrm{πn},\;\mathrm n\in\mathbb{Z};[/math]

[math]\pm\frac{\mathrm\pi}6+\mathrm{πk},\;\mathrm k\in\mathbb{Z};[/math]

б) [math]-\frac{7\mathrm\pi}6,\;-\mathrm\pi,\;-\frac{5\mathrm\pi}6,\;-\frac{\mathrm\pi}6,\;0[/math]

14

Около шара описана правильная усечённая четырёхугольная пирамида, у которой площадь одного основания в 9 раз больше площади другого.

а) Докажите, что боковыми гранями усечённой пирамиды являются трапеции, высоты которых равны среднему арифметическому сторон оснований.

б) Найдите угол наклона боковой грани к плоскости основания.

Показать ответ

[math]\frac{\mathrm\pi}3[/math]

15

Решите неравенство [math]\log_{0,5}\left(x-3\right)-\log_{0,5}\left(x+3\right)-\log_\frac{x+3}{x-3}2>0[/math].

Показать ответ
3 < х < 9
16

Радиусы двух окружностей с центрами О1 и О2, касающихся внутренним образом в точке А, равны 5 и 4 соответственно. Их общая секущая, проведённая через точку А, пересекает первую окружность в точке В, вторую — в точке С.

а) Докажите, что [math]\frac{AB}{AO_1}=\frac{BC}{O_1O_2}[/math].

б) Найдите длину касательной, проведённой из точки В ко второй окружности, если дополнительно известно, что АВ = 1.

Показать ответ

[math]\frac{\sqrt5}5[/math]

17

Первоначально годовой фонд заработной платы столовой составлял 1 500 000 рублей. После увеличения числа клиентов, штатное расписание было увеличено на 9 человек, а фонд заработной платы возрос до 5 250 000 рублей, средняя годовая заработная плата (относительно всех сотрудников) стала больше на 100 000 рублей. Какова стала средняя заработная плата (относительно всех сотрудников) после увеличения годового фонда?

Показать ответ
350 000 руб
18

При каких значениях р > 0 уравнение [math]3\sqrt{2x+p}=1+3x[/math] имеет два различных корня?

Показать ответ

[math]0<p\leqslant\frac23[/math]

19

Решите в целых числах уравнение 19х2 + 28у2 = 729.

Показать ответ
Решений нет.
0 из 0
Ваш ответ Правильный ответ Первичный балл

Здесь появится результат тестовой части.

Нажмите на кнопку «Завершить работу», чтобы увидеть правильные ответы.